Fraud Detection Systems in Comparative Analysis in Indonesia and Australia
DOI:
https://doi.org/10.38035/gijea.v3i3.627Keywords:
Fraud Detection System, Accounting Management, Forensic AuditAbstract
This research aims to analyze fraud detection systems commonly implemented in Indonesia and Australia, identify differences in technological infrastructure, regulations, and human resource readiness, and describe case studies or concrete examples of fraud detection system implementation. Through the literature review method, this research collected 15 relevant scientific articles published between 2021 and 2024. The analysis shows that Australia has implemented a more sophisticated fraud detection system by utilizing technologies such as AI and data analytics, while Indonesia still relies on traditional methods with little technology adoption. Differences in technological infrastructure readiness, regulations, and HR training in both countries are important factors that affect the effectiveness of fraud detection systems. This research also provides recommendations to strengthen the internal control system in Indonesia by adopting modern technology, increasing HR capacity, and harmonizing regulations to create a more efficient and transparent system to prevent fraud.
References
Abu Afifa, M. M., Vo Van, H., & Le Hoang Van, T. (2023). Blockchain adoption in accounting by an extended UTAUT model: empirical evidence from an emerging economy. Journal of Financial Reporting and Accounting, 21(1), 5–44. https://doi.org/10.1108/JFRA-12-2021-0434
Achmad, T., Ghozali, I., & Pamungkas, I. D. (2022). Hexagon Fraud: Detection of Fraudulent Financial Reporting in State-Owned Enterprises Indonesia. Economies, 10(1), 13. https://doi.org/10.3390/economies10010013
Achmad, T., Huang, C.-Y., Putra, M. A., & Pamungkas, I. D. (2024). Forensic Accounting and Risk Management: Exploring the Impact of Generalized Audit Software and Whistleblowing Systems on Fraud Detection in Indonesia. Journal of Risk and Financial Management, 17(12), 573. https://doi.org/10.3390/jrfm17120573
Akbar, M. R., Hidayatullah, K. M. S., & Sutabri, T. (2024). EVALUASI EFEKTIVITAS SISTEM DETEKSI PENIPUAN BERBASIS AI MENGGUNAKAN METODE REGRESI LOGISTIK UNTUK MENINGKATKAN KEAMANAN TRANSAKSI PADA STARTUP FINANCE. J-ENSITEC, 10(02), 10107–10111. https://doi.org/10.31949/jensitec.v10i02.9818
Al-Hashedi, K. G., & Magalingam, P. (2021). Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019. Computer Science Review, 40, 100402. https://doi.org/10.1016/j.cosrev.2021.100402
Aljunaid, S. K., Almheiri, S. J., Dawood, H., & Khan, M. A. (2025). Secure and Transparent Banking: Explainable AI-Driven Federated Learning Model for Financial Fraud Detection. Journal of Risk and Financial Management, 18(4), 179. https://doi.org/10.3390/jrfm18040179
Australian Taxation Office. (2025). Governance of Artificial Intelligence at the Australian Taxation Office. https://www.anao.gov.au/work/performance-audit/governance-of-artificial-intelligence-the-australian-taxation-office
Bao, Y., Hilary, G., & Ke, B. (2022). Artificial intelligence and fraud detection. Innovative Technology at the Interface of Finance and Operations, 1(1), 223–247.
Baumgärtler, T., Eudelle, P., & Cano, J. G. (2024). An international analysis of fraud detection in European structural and investment funds. European J. of International Management, 22(2), 198–229. https://doi.org/10.1504/EJIM.2024.135943
Bhowte, Y. W., Roy, A., Raj, K. B., Sharma, M., Devi, K., & LathaSoundarraj, P. (2024). Advanced Fraud Detection Using Machine Learning Techniques in Accounting and Finance Sector. 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), 1–6. https://doi.org/10.1109/ICONSTEM60960.2024.10568756
Carnegie, G., Parker, L., & Tsahuridu, E. (2021). It’s 2020: What is Accounting Today? Australian Accounting Review, 31(1), 65–73. https://doi.org/10.1111/auar.12325
Damerji, H., & Salimi, A. (2021). Mediating effect of use perceptions on technology readiness and adoption of artificial intelligence in accounting. Accounting Education, 30(2), 107–130. https://doi.org/10.1080/09639284.2021.1872035
DEB, K., Ghosal, S., & Bose, D. (2021). A Comparative Study on Credit Card Fraud Detection. https://doi.org/10.31224/osf.io/8ctxd
Desplebin, O., Lux, G., & Petit, N. (2025). Inclusion of blockchain in university accounting curricula: an overview of practices and strategies. Accounting Education, 34(2), 265–286. https://doi.org/10.1080/09639284.2024.2321125
Dianto, A. (2023). Pengaruh Akuntansi Forensik, Audit Investigatif, Professional Judgment, dan Whistleblower terhadap Pengungkapan Fraud. Jurnal Akuntansi Neraca, 1(2), 11–23. https://doi.org/10.59837/jan.v1i2.7
Fatimah, K., & Pramudyastuti, O. L. (2022). ANALISIS PERAN AUDIT INTERNAL DALAM UPAYA PENCEGAHAN DAN PENDETEKSIAN KENCENDERUNGAN KECURANGAN AKUNTANSI (FRAUD). Jurnal Ilmiah Akuntansi Dan Bisnis, 7(2), 235–243. https://doi.org/10.38043/jiab.v7i2.3794
Gunarsa, A., Latifah Sukmawatiy Yuniar, & Andi Ainil Mufida Tanra. (2023). Efektivitas Metode Pencegahan Dan Pendeteksian Kecurangan (Fraud). Jurnal Aktiva?: Riset Akuntansi Dan Keuangan, 5(3), 161–172. https://doi.org/10.52005/aktiva.v5i3.206
Hamisu, M., & Mansour, A. (2021). Detecting Advance Fee Fraud Using NLP Bag of Word Model. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA), 94–97. https://doi.org/10.1109/CYBERNIGERIA51635.2021.9428793
Hariyani, E., Supriono, S., Afriana Hanif, R., Paulus Silalahi, S., & Wiguna, M. (2024). Determinants influencing fraud detection: Role of internal auditors’ quality. Problems and Perspectives in Management, 22(2), 51–60. https://doi.org/10.21511/ppm.22(2).2024.05
Indonesia Corruption Watch. (2023). Patgulipat Dana Hibah. https://antikorupsi.org/id/patgulipat-dana-hibah
Indra, I., Iskak, J., & Khaq, A. (2022). Enhancing the Role of the Audit Board of the Republic of Indonesia in Fraud Detection. Jurnal Tata Kelola Dan Akuntabilitas Keuangan Negara, 131–143. https://doi.org/10.28986/jtaken.v8i2.935
Junaidi, Hendrian, & Syahputra, B. E. (2024). Fraud detection in public sector institutions: an empirical study in Indonesia. Cogent Business & Management, 11(1). https://doi.org/10.1080/23311975.2024.2404479
Kaur, B., Sood, K., & Grima, S. (2023). A systematic review on forensic accounting and its contribution towards fraud detection and prevention. Journal of Financial Regulation and Compliance, 31(1), 60–95. https://doi.org/10.1108/JFRC-02-2022-0015
Khairunnisa, N. R., Kuntadi, C., & Pramukty, R. (2023). PENGARUH SISTEM INTERNAL KONTROL, AUDIT INTERNAL DAN PENERAPAN GOOD CORPORATE GOVERNANCE TERHADAP KECURANGAN (FRAUD) PERBANKAN. JURNAL ECONOMINA, 2(7), 1666–1676. https://doi.org/10.55681/economina.v2i7.665
Leitner-Hanetseder, S., Lehner, O. M., Eisl, C., & Forstenlechner, C. (2021). A profession in transition: actors, tasks and roles in AI-based accounting. Journal of Applied Accounting Research, 22(3), 539–556. https://doi.org/10.1108/JAAR-10-2020-0201
Mahya, L., Tarjo, T., Sanusi, Z. M., & Kurniawan, F. A. (2023). Intelligent Automation Of Fraud Detection And Investigation:A Bibliometric Analysis Approach. Jurnal Reviu Akuntansi Dan Keuangan, 13(3), 588–613. https://doi.org/10.22219/jrak.v13i3.28487
Mapa Mudiyanselage, C., Perera, P., & Grandhi, S. (2023). A Blockchain-Based Model for the Prevention of Superannuation Fraud: A Study of Australian Super Funds. Applied Sciences, 13(17), 9949. https://doi.org/10.3390/app13179949
Nabella, T. (2024). Manajemen Risiko: Deteksi Kecurangan Melalui Strategi Anti Fraud. Syntax Idea, 6(4), 1852–1862. https://doi.org/10.46799/syntax-idea.v6i4.3194
Nurdiani, P., Prastianti, P., Andriansyah, M., Pransiska, S., Maryani, N., Chaurisma, F. Y., & Wulandari, W. (2025). Mekanisme Pengungkapan Fraud: Studi Kasus Hambalang Dan Skandal PT Garuda Indonesia. Jurnal Akuntansi Keuangan Dan Bisnis, 2(4), 1982–1988.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Emha Ichlasul Akbar, Lasih Amaliyah, Tina Amelia, Rozikin, Luki Setiawati

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright :
Authors who publish their manuscripts in this journal agree to the following conditions:
- Copyright in each article belongs to the author.
- The author acknowledges that the GIJEA has the right to be the first to publish under a Creative Commons Attribution 4.0 International license (Attribution 4.0 International CC BY 4.0).
- Authors can submit articles separately, arrange the non-exclusive distribution of manuscripts that have been published in this journal to other versions (for example, sent to the author's institutional repository, publication in a book, etc.), by acknowledging that the manuscript has been published for the first time at GIJEA.























